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Abstract—Mature simulation systems for Spiking Neural Net-
works (SNNs) become more relevant than ever for understanding
the brain and supporting neuromorphic computing. The CARL-
sim SNN platform is one of the first Open Source simulation
systems that utilized CUDA GPUs to address the tremendous
parallel processing demands of natural brains. It has evolved
over almost a decade in numerous scientific research projects
requiring efficient biologically plausible modeling at scale. With
its sixth major release, CARLsim 6 respects this legacy by
supporting the latest versions of operating systems, development
tool chains, multi-core computers, and of course GPUs. It runs
on a range of platforms; from Notebooks up to the NVIDIA
DGX-A100 supercomputer, and is used in biologically plausible
simulations of the hippocampus and neocortex. The latest version
has added flexibility for incorporating long-term and short-term
synaptic plasticity. Neuromodulation is an important property
of neurobiology that can lead to rapid few shot learning,
network rewiring, and neural activity modulation. Because of
this, CARLsim 6 now supports four multiple neuromodulators
for simulating neural excitability and synaptic plasticity.

Index Terms—spiking neural network (SNN); neuromodula-
tion; STP; STDP; GPCR; PKA/ PLC; LTP/ LTD; DA; ACh;
NE; 5-HT;

I. INTRODUCTION

Spiking Neural Networks (SNNs) provide a powerful
method for modeling the dynamics of biological neural net-
works. Active research in the community calls for the de-
velopment of more flexible and accessible tools for building
and simulating SNNs. Such tools would provide an easy-to-
use user interface, efficient and scalable network processing
ability, and a rich set of native features that supports a wide
variety of simulation needs.

CARLsim is a biologically detailed and large-scale SNN
simulator. In previous iterations, CARLsim included a number
of features that supported the simulation of complex networks,
including synaptic conductances, spike-timing-dependent plas-
ticity (STDP) that can be applied to either glutamatergic

synapses (E-STDP) or to GABAergic synapses (I-STDP),
Dopamine-modulated STDP (DA-STDP), and short-term plas-
ticity (STP) [1]. CARLsim provides real-time and offline data
analysis tools and an automated parameter tuning interface
(PTI) to accelerate the creation and analysis of SNN models
[1]. CARLsim also supports the utilization of multiple GPUs
and multiple CPUs concurrently in a heterogeneous computing
cluster, which greatly improves the efficiency in network
simulations [2]. Recently, a Python interface to CARLsim was
introduced, which retains the efficiency through the C++ core
developments, and also further increases its accessibility to the
computational neuroscience and machine learning communi-
ties.

In this release, new features in CARLsim 6 can be divided
into system maintenance and functional enhancements. The
first group is motivated to keep CARLsim up-to-date, e.g.,
by supporting the latest hardware and software stacks. Also,
defects were addressed, documentation extended, and other
general improvements such as the implementation of cMake to
support all relevant target platforms. Furthermore, CARLsim 6
provides a Python version for the Offline Analysis Tool (OAT).

The functional improvements include the support of multi-
ple neuromodulatory features which enables the implementa-
tion of the neuromodulatory system of mammals as defined
by [3], [4], configuration of spike-timing dependent plasticity
(STDP) and short-term plasticity (STP) at the connection level,
rather than the post-synaptic group level (Fig. 1).

These features allow CARLsim users to utilize different
hardware configurations and incorporate greater biological
fidelity into their models. In the remainder of the paper, we
describe the new system maintenance and functional features
in detail. As in previous releases, CARLsim 6 is open-
source, extensible, backwards compatible with prior versions,
and publicly available on GitHub (https://github.com/UCI-
CARL/CARLsim6).
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Fig. 1. Configuration of CARLsim 6 structural and neuromodulation features.
CUBA/COBA can be configured at group level. Neuromodulatory neurons can
project to other neuron groups. Plasticity is connection based. Receptors can
be defined on both pre- and post-synapctic groups.

II. NEW FEATURES

A. System Maintenance

1) cMake: cMake is recognized as the best practice build
system for C++ projects by the open source community.
cMake supports multiple operating systems like Linux, Mac
OS, and Windows along with their distinct development en-
vironments like Microsoft Visual Studio, and Eclipse CDT
for Linux as required by NVIDIA. Moreover, the features to
be compiled and linked can be easily configured with build
options in the cMake GUI or with the command line interface
(CLI).

2) Windows Support: As cMake is able to generate project
files for all current versions of Microsoft Visual Studio,
CARLsim 6 restores the support of Microsoft Windows, which
was deprecated in CARLsim 5 due to difficulty of mainte-
nance. On Windows, CARLsim now deploys as optimized
Dynamic Link Libraries (DLLs) that allow the integration as
plug-ins, for instance in Qt. Additionally, CARLsim 6 provides
extensions to PyNN that enables PyCARL [5] to run on
Windows as well, which in turn enables working interactively
with CARLsim in JupyterLab.

3) CUDA and GPU support: The support of all relevant
CUDA versions and GPUs remains an important feature of
CARLsim. CUDA was successfully tested on Linux and
Windows up to the latest version, which was 11.5 at the time
of writing. CARLsim 6 also adds supports for GPUs with the
Ampere architecture, which is used by NVIDIA GForce RTX
3060 up to the NVIDIA DGX-A100. Due to the many pos-
sible combinations of operating systems, development stacks,
CUDA versions, and GPUs, the CARLsim website lists tested
systems and recommendations. This also includes performance
benchmarks to serve as a guideline.

4) Binaries and Community Contributions: CARLsim 6
also provides binaries for the common platforms like Ubuntu
20.04 LTS and Windows 10/11. This is to facilitate evalua-
tion by researchers and data scientists who want to evaluate
CARLsim without the need to compile it from source, which
is still a non-trivial task resulting from the strong dependency

of CUDA on the target hardware platform. Contributions
by the community are following the GitHub workflow. New
features and fixes are organized in Git feature branches and
are committed by the contributor as a GitHub Pull Request
(PR). After the PR is successfully reviewed by the CARLsim
development team, it is merged into the master branch, which
triggers the continuous integration and build pipeline (CI/CD).
If all quality gates have been passed, the binaries are created
under the release tagged ”LATEST” and will be available for
download.

5) Docker support: Docker images of Ubuntu 20.04 with
CARLsim 6 installed and configured are also provided to help
users switch from previous versions to CARLsim 6. Rather
than installing the software on a bare machine, users have the
option to create containers with the provided Docker images
and quickly start using CARLsim 6 without worrying about the
installation and configuration. This feature not only provides
easier access to CARLsim 6 but also helps to deploy CARLsim
6 projects on cloud computing platforms (e.g., Kubernetes)
that run containerized workloads and services.

6) Python OAT: Previous versions of CARLsim supported
a MATLAB Offline Analysis Toolbox (OAT) that provided
scripts to analyze the spike monitor and connection monitor
output from SNN simulations. Because the MATLAB require-
ment was restrictive, CARLsim 6 introduces a more accessible
Python OAT for these monitors.

7) Parameter Tuning with Evolutionary Computation Pack-
ages: CARLsim 6 provides an automated parameter tuning
interface (PTI), which is integrated with two powerful evolu-
tionary computation (EC) packages written in Java (ECJ) [6]
and in Python (LEAP) [7]. The PTI assists in finding optimal
parameters for the network simulation at different levels, from
the level of single neurons to the level of the entire network,
with a fitness function flexibly defined by the user that de-
scribes the need of their task. The evolutionary search process
is accelerated with the support of parallel execution of multiple
SNN instances in CARLsim. CARLsim in combination with
ECJ has demonstrated success in reproducing neural dynamics
observed in a number of brain regions [8]–[10]. As a newly
integrated package, LEAP provides easy-to-use syntax and
powerful visualization features.

CARLsim 6 introduces several functional enhancements that
allow for SNN simulations with high biological fidelity. The
additional parameters may add complexity to the parameter
tuning process. The automated PTI can be used to tackle
this challenge and efficiently search for appropriate parameter
values.

B. Functional Enhancements

1) Group based Configuration of Input Current: In addition
to the current based synaptic input (CUBA) that linearly com-
bines the presynaptic spikes, the more realistic conductance
based method (COBA) simulates the ionotropic receptors and
its underlying neurotransmitters like gamma-aminobutyric acid
(GABA) and glutamate. In previous versions of CARLsim,
the choice of CUBA versus COBA was applied to the entire
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simulation. In CARLsim 6 the calculation method of the
input current can be individually defined for each neuron
group to provide greater flexibility. The interface is backward
compatible so that former models still work as do the network
global defaults. Furthermore, this group based configuration
was extended to implement metabotropic receptors that intrin-
sically rely on neuromodulators and which are also known as
G-Protein Coupled Receptors (GPCRs) [11], [12], [13] like
dopaminergic D1/2, norepinephrine alpha1, or the muscarinic
for acetylcholine ACh. The neuromodulation will be described
in more detail below.

2) Configurable STDP per Connection: In the previous
releases, STDP was specified on the post-synaptic group, and
all connections to this group with the same connection type
(i.e., E-STDP or I-STDP) shared the same STDP parameters.
The present release improves the flexibility in STDP setting
and enables users to assign separate STDP parameters for each
inter-group connection. This feature adds biological plausi-
bility to the SNN model, and the additional parameters also
increase the capacity of the model.

The code snippet below provides an example of specifying
different STDP configurations for the two incoming excitatory
projections into the output neuron group:

// connect neuron groups
sim.connect(gIn, gOut, ...
sim.connect(gOut, gOut, ...

// set E-STDP for the input connection
sim.setESTDP(gIn, gOut, true, STANDARD,

ExpCurve(alpha_LTP_in, tau_LTP_in,
-alpha_LTD_in, tau_LTP_in));

// set E-STDP for the recurrent connection
sim.setESTDP(gOut, gOut, true, STANDARD,

ExpCurve(alpha_LTP_out, tau_LTP_out,
-alpha_LTD_out, tau_LTP_out));

3) Configurable STP per Connection: In addition to STDP,
CARLsim 6 enables users to configure STP for each inter-
group connection. Various forms of STP have been observed in
neural circuits for distinct connection types [14]; this updated
feature allows for further variability to be included in an SNN
by allowing STP variables u, τu, τv , and τd to be set for each
connection.

The code snippet below demonstrates how STP is config-
ured on an inter-group connection between Basket (inhibitory)
and Pyramidal (excitatory) cells, two well documented neuron
types in the Hippocampus:

// configure STP on an inter-group
// connection between CA3 Basket
// and CA3 Pyramidal groups
sim.setSTP(CA3_Basket, CA3_Pyramidal,

true,
STPu(0.23f, 0.04f),
STPtauU(16.74f, 2.0f),

STPtauX(384.34f, 50.0f),
STPtdAMPA(5.0f, 0.0f),
STPtdNMDA(150.0f, 0.0f),
STPtdGABAa(7.64f, 1.5f),
STPtdGABAb(150.0f, 0.0f),
STPtrNMDA(0.0f, 0.0f),
STPtrGABAb(0.0f, 0.0f));

Currently a mean and standard deviation can be set for
each STP variable. The example above includes a mean and
standard deviation set for u, τu, τv , and for AMPA and
GABAA τd as these derived parameter estimates were based
on receptors with fast synaptic properties.

4) Neuromodulatory Effects on Target Groups: Unlike
many neurotransmitters, neuromodulators (NMs) can have
broad, long lasting effects on downstream neurons [15]. While
single pathways of distinct NMs are well understood [16], it
is clear that NMs also heavily influence each other [3], [4].
Therefore, CARLsim 6 provides equivalent support for four
major neuromodulators (NM4): dopamine (DA), serotonin (5-
HT), acetylcholine (ACh), and norepinephrine (NE). Their
concentrations are captured as an NM4 molarity vector in
the neuron group, which is targeted by the projection of
neuromodulatory neurons. Consequently, the CARLsim offline
analysis toolkit (OAT) was extended to visualize the molarity
in the distinct target groups as shown in Fig. 2. A target group
accumulates the molarity of all contained postsynaptic neu-
rons of neuromodulatory neurons. The NM4 molarity vector
is utilized as input for multivariate functions to implement
neuromodulated excitability and plasticity.

In a previous custom extension for CARLsim, dopamine
modulated post-synaptic facilitation (DA-PSF) was imple-
mented within a model of the insular cortex [17]. However,
multiple modulators can act on the same synapse to modify
its strength, presumably depending on the behavioral need.
Such effects can be drastic: 5-HT can functionally silence
synapses, whereas dopamine can unmask synapses that are
normally silent. The combined action of multiple neuromodu-
lators on synapses can be more than simply additive, and the
same neuromodulator can have opposing actions on synaptic
strength [18].

With CARLsim 6, the calculation method of the input
current can be individually set for a neuron group and param-
eterized by utilizing an extended form of linear combination
that can be seen as a generalization of DA-PSF mentioned
above. Fig. 2 presents current based examples for synergistic
and antagonistic receptors, on which the concentrations of
the neuromodulators of the post synaptic group individually
strengthen or weaken the input current. The NM4 molarity
vector is applied as input for the multivariate current cal-
culation. The following code snippet demonstrates the con-
figuration of an antagonistic receptor that is silenced for 5-
HT, enhanced for NE, and neutral when both NM are at
equilibrium, see also Fig. 2 (b). The synergistic receptor of
Fig. 2 (a) is configured in the same way but with different
parameters.
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(a) Synergistic impact of NE on DA resulting in tonic to phasic excitability

(b) Antagonistic impact of 5-HT on NE with suppression and equilibrium

Fig. 2. CARLsim 6 allows the configuration of Izhikevich neurons with neuromodulated synergistic and antagonistic receptors, that exhibit non-linear
excitability with an arbitrary crossover from tonic to phasic firing. The left column shows the firing in CARLsim’s SpikeMonitor of such neurons without
neuromodulation, labeled as control group. Each neuron was mapped to an increasing input current, displayed on the y-axis, with a designed crossover at
about 10 µA (7→ NeuronID 10). The simulation time is displayed on the x-axis in ms for each neuron group. (a) Synergistic effect on the neurons of the
neuromodulators NE and DA. The molarity of the target groups are displayed in the CARLsim’s GroupMonitor in the second row, and have the same values
over time to demonstrate the synergistic effect on the receptor which is the changed crossover point of the firing from tonic to phasic. DA lowers the crossover
down to 6 µA, while NE lowers it even more down to 3 µA, and with both NMs present, the phasic firing is almost instantaneous. (b) Antagonistic effects
of 5-HT on NE, which is suppression for 5-HT and neutralization at equilibrium. The SpikeMonitor of group nm1 shows, that the antagonistic receptor has
the same excitability for NE as above. However, when 5-HT is present, it acts as antagonist, and the SpikeMonitor of group nm2 displays gaps of spikes,
when the neuron was silenced by 5-HT. The right column shows, that if both NM are present at the same level, the NM-effect is neutralized and group nm12
expose the same behaviour as the control group.
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// target neuron group
sim.setNeuromodulator(g_nm,
baseDA, tauDA, releaseDA, true,
base5HT, tau5HT, release5HT, true,
0.001f, 1.f, 0.f, false,
baseNE, tauNE, releaseNE, true
);

// antagonistic receptor
sim.setNM4weighted(g_nm, NM4W_LN21,
0.0f, // DA
-1.0f/1.5f, // 5-HT normalize and weight
0.0f, // ACh
1.0f/1.5f, // NE normalize and weight
4.0f/2.0f, // normalize all and boost
2.0f // unmodulated baseline
);

// synergistic receptor
sim.setNM4weighted(g_nm, NM4W_LN21,
1.0f/1.5f, // DA normalize and weight
0.0f, // 5-HT
0.0f, // ACh
2.0f/1.5f, // NE normalize and weight
4.0f / (1.0f + 2.0f),

// normalize all and boost
1.0f // unmodulated baseline
);

CARLsim allows Izhikevich neurons to exhibit non-linear
excitability with crossover from tonic to phasic expression.
Fig. 2 shows the firing of such a neuron in the control group for
an increasing input current with a designed crossover at about
10 µA. For the synergistic receptor, DA lowers the crossover
down to 6 µA, with NE even below 3 µA, and with both NMs
present, the phasic firing is almost instantaneous, see Fig. 2 (a).
In contrast, the receptor in Fig. 2 (b) has the same excitability
for NE, but has 5-HT as antagonist that can silence the neuron
if present alone or neutralize the effect of NE if both levels
are the same.

5) Conductance Modulation of Receptors: CARLsim 6
implements the neuromodulated receptors NEα1/α2A and
DAD1/D2 of the prefrontal cortex working memory model as
defined by [19], [20]. As shown in the code snippet below, the
receptors are configured utilizing generic interface functions
that are parameterized with the specific type of the receptor
(e.g., setConnectionModulation). The pre- and post-synaptic
groups are used to identify the connection group and assign
the receptor settings (e.g., recurrent on Layer 3, MD/SC to
Layer 5 for column c).

// noadrenergic alpha2A receptor
sim.setConnectionModulation(

g_L3e[c], g_L3e[c], alpha2A_ADK13);
// dopaminergic D1 receptor
sim.setConnectionModulation(

g_L3e_npref[d], g_L3e[c], D1_ADK13);
// dopaminergic D2 receptors
sim.setConnectionModulation(

g_L5e[c], g_L5e[c], D2_AK15);
sim.setConnectionModulation(

g_MD_SC, g_L5e[c], D2_AK15);
// alpha1 receptor (DA, NE, lambda)
sim.setNM4weighted(

g_L3e[c], alpha1_ADK13,
1.f, 0.f, 0.f, 1.0f, 1.f,
-1.0f / 6.0f / log(1.0f / 3.0f));

Fig. 3 shows the underlying continuous mapping of NE, DA
that matches the discrete levels and implements the sensitivity
dependency of the interaction between NE and DA and its
effect on working memory as described in [19], [20]. Memory
is properly maintained when these neuromodulators are bal-
anced, but detrimental effects can occur due to concentration
imbalances (see [19], [20] for details). According to the
generic interface mentioned above, the internal implementation
provides a framework that allows to implement other GPCRs
in the same manner.

6) Neuromodulated STP: CARLsim 6 allows STP of an
arbitrary neuron group to be influenced by neuromodulators.
If the presynaptic neuron is repetitively active, STP can act
as a gain-control mechanism, modifying synaptic strength as
a function of the frequency of presynaptic activity, or in some
cases, even switching the sign of synaptic dynamics from
depression to facilitation and vice versa [18]. The following
code snippet shows how the STP variables u, τu, τv [21] can
be configured to be modulated by a multivariate function on
the NM4 concentration to express facilitation as standard STP
at a certain level. The modulated STP was validated to yield
the same plasticity as standard STP. This new feature can be
applied to elucidate synaptic gain and plasticity operations in
the hippocampal subregion CA3 [22].

// facilitative STP
sim.setSTP(g1,true, 0.15f, 750.0f, 50.0f);

// modulated STP by serotonin
float u[] = { 0.0f, 1.0f, 0.0f, 0.0f,

0.30f / 0.15f, 1.0f };
float tau_u[] = { 0.0f, 1.0f, 0.0f, 0.0f,

-700.0f / 750.0f, 1.0f };
float tau_x[] = { 0.0f, 1.0f, 0.0f, 0.0f,

700.0f / 50.0f, 1.0f };
sim.setNM4STP(g1, u, tau_u, tau_x);
sim.setNeuromodulator(g1,

0.001f, 1.f, 0.f, false,
1.0f; 1.f, 0.f, true, // base5HT
0.001f, 1.f, 0.f, false,
0.001f, 1.f, 0.f, false);

7) Eligibility trace based STDP: CARLsim 6 extends the
eligibility trace based STDP for dopamine (DA-STDP) of
former versions [17] equally to the other neuromodulators:
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(a) Neuromodulatory factor µc(DA) of receptor D2 (b) Neuromodulatory factor µ(DA,NE) of receptor α1

Fig. 3. The working memory sensitively depends on a well-balanced concentration of neuromodulators. CARLsim 6 provides a continuous mapping of
NE, DA to the neuromodulatory factor µ that matches the discrete levels investigated in [19], [20]. (a) Continous mapping of DA to the connection based
neuromodulatory factor µc of the D2 receptor fitting the discrete levels (inside columns) given by [20]. (b) Continuous bivariate mapping of DA, NE to the
group based neuromodulatory factor µ of the α1 receptor fitting the discrete bivariate levels (marked by blue dots) given by [19].

5-HT, ACh, and NE (see code snippet below). As STDP
is connection based with CARLsim 6, multiple connection
groups with different neuromodulators are now possible which
is a precondition to implement the neuromodulatory system
as defined by [3]. Also the offline analysis tool (OAT) was
extended to support the monitoring of the NM level of the
eligibility trace based STDP.

// set up dopamine modulated STDP
sim.setSTDP(gin, gPFC, true, DA_MOD,
alphaPlus,tauPlus,alphaMinus,tauMinus);
// or for other modulators
sim.setSTDP(gin2, gPFC, true, SE_MOD,..
sim.setSTDP(gin3, gPFC, true, AC_MOD,..
sim.setSTDP(gin4, gPFC, true, NE_MOD,..

8) PKA/PLC modulated LTP/LTD of STDP: Neuromodula-
tors play an important role in long-term potentiation (LTP) and
depression (LTD) of mammalian central synapses. Different
neuromodulators can change the balance of LTP and LTD and
the effects on STDP reveal a simple rule: the activation of
the protein kinase A (PKA) pathway, e.g., by beta-adrenergic
receptors, promotes and gates LTP, whereas the activation of
the phospholipase C (PLC) pathway, e.g., by M1 muscarinic
receptors, promotes LTD. Also the activation of each pathway
suppresses the other, suggesting a push-pull rule for the
neuromodulation of long-term synaptic plasticity that seems
to be independent of the underlying mechanisms of LTP and
LTD [18].

With CARLsim 6, the PKA/PLC modulation extends the
described scenario for any arbitrary neuromodulator pair,
for instance NE and ACh. Fig. 4 shows a bivariate dy-
namic adaptation of the learning with seamless transforma-
tion of the usually statically configured parameters of STDP
(α+

LTP , τ
+
LTP , α

−
LTD, τ−LTD) [23]. With this implementation,

SNNs can adapt not only the learning rate depending on the
neuromodulators but also determine unlearning, which might
be most relevant for learning by rewiring as described in [24]–

[26]. The configuration is shown in the following excerpt of
the unit test, that validates the PKA/PLC modulated STDP
with the fixed values of standard STDP (see Fig. 4).

float ALPHA_LTP = 0.08f;
float ALPHA_LTD = -0.12f;
float TAU_LTP = 8.0f;
float TAU_LTD = 8.0f;
//enum FigNr { _a, _b, _c, ..
//float ne []={ 1.0f, 1.0f, 0.0f, ..
//float ach[]={ 1.0f, 0.0f, 1.0f, ..
//float a_p[]={ 0.08f, 0.16f, -0.08f, ..
//float a_m[]={-0.12f, 0.12f, -0.24f, ..

// set STDP group
g1 = sim->createGroup("excit", 1,

EXCITATORY_NEURON);
sim->setNeuronParameters(g1,

0.02f, 0.2f, -65.0f, 8.0f);

// set modulated STDP group
//g2 = sim->createGroup(..
//sim->setNeuronParameters(g2,..
sim->setNeuromodulator(g2,
1.0f, 1.0f, 1.0f, false, // DA
1.0f, 1.0f, 1.0f, false, // 5HT
ach[fig], 1000000, 0.000001f, true,
ne[fig], 1000000, 0.000001f, true);

// set ESTDP with reference values
sim->setConductances(false);
sim->setESTDP(gex2, g1, true, STANDARD,

ExpCurve(
a_p[fig], TAU_LTP,
a_m[fig], TAU_LTP));

// set PKA_PLC modulated ESTDP

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 14,2022 at 23:08:42 UTC from IEEE Xplore.  Restrictions apply. 



sim->setConductances(false);
sim->setESTDP(gex2, g2, true, PKA_PLC_MOD,

ExpCurve(
ALPHA_LTP, TAU_LTP,
ALPHA_LTD, TAU_LTP),

PkaPlcModulation(
NM_NE, 1.0f, // pka
NM_ACh, 1.0f)); // plc

III. BENCHMARKS AND EXAMPLE APPLICATIONS

A. Computational Performance

A strict objective for CARLsim 6 was to keep the same
relative performance compared to its predecessor versions,
despite the many kernel changes that were necessary for the
new features described above. As shown in Fig. 5, CARLsim 6
achieves a similar performance as CARLsim 5 and also keeps
the benefits of utilizing multiple GPUs as the size of spiking
neural networks increases.

Moreover, due to the achieved backward compatibility and
the thorough application of cMake, the latest GPUs are
supported on all target platforms (Linux, Windows, MacOS).
With the continuing increase in computing power by orders of
magnitude every few years, we are able to exploit performance
improvements with retail GPU cards that outperform former
Tesla cards. For instance, the performance of Golosio [27]
running on a Tesla K80 can be significantly improved on a
desktop NVIDIA Geforce RTX 3090. By utilizing the NVIDIA
Geforce RTX 3090 supported by CARLsim 6, we double the
RAM (24GB vs. 12GB), quadruple the memory bandwidth
(936 GB/s vs. 240 GB/s), triple the core clock speed (1400
MHz vs. 562 MHz), quadruple the number of transistors (28
mil. vs. 7 mil.), and quadruple the number of CUDA cores
(10496 vs. 2496), which are critical for highly parallel single
precision float operations that are necessary for numerical
integration in some SNNs.

B. Compatibility with Neuromorphic Hardware

One of NVIDIA’s keys to success was the cost reduction of
GPU chips through mass production of their graphics cards
for computer games, which ultimately led to their leading
role today in supercomputing and artificial intelligence. As a
consequence, GPUs still outperform neuromorphic hardware,
especially for large scale models [28], but this comes at
a significant energy cost. On the other hand, low power
neuromorphic chips (e.g., Intel’s Loihi 2 and BrainChip’s
Akida) have attained product level maturity, which makes them
the primary choice for cloud edge devices and autonomous
robots. The contribution of PyCARL [5] allows not only the
development of models for such neuromorphic hardware but
also to ensure spike timing when the SNNs are transferred to
neuromorphic chips.

C. Large-scale model of a hippocampal subregion

Neural circuit models in the past commonly involved the
modeling of a few neuron types and their corresponding

connections to elucidate a particular function. To foster real-
scale, more biologically realistic neural circuit models, one
can think of different conceptual elements to build a network.
These can include the counts and input-output relationships of
each neuron type, the plasticity (short and long term) and prob-
abilities of connection between neuron types, neuromodulatory
effects on synaptic dynamics, along with how neurons and
their connections are oriented in space. CARLsim 6 supports
all of these components, and recently a real-scale neural circuit
model (8 neuron types and 51 connection types; ∼90K neurons
and ∼250M synapses) of mouse hippocampal subregion CA3
was built incorporating the majority of these conceptual el-
ements utilizing parameters derived from Hippocampome.org
[14], [22], [29], [30]. Leveraging CARLsim 6, a second of
simulation time took 4 minutes of real time, and generated beta
oscillations that have been observed in this hippocampal sub-
region during stationary behaviors [22]. Fig. 6 highlights some
of the resultant activity that the model produces using the SNN
Analysis Toolbox of [22], e.g., representative voltage traces
from individual neurons from each excitatory and inhibitory
neuron type, or the power spectrum of the local field potential
(LFP) from pyramidal cells. CARLsim 6 therefore can be
adapted and extended to support biologically realistic, data-
driven neural circuit models of various brain areas, making
it an attractive and effective simulation environment for its
speed, scale, and complexity of modeling at the neural circuit
level.

IV. RELATED WORK

A. Deep Learning simulation environments

Deep Learning (DL) simulation environments for Artificial
Neural Networks (ANNs) like PyTorch [31], and TensorFlow
[32] are well developed and have been adopted by NVIDIA
for GPU optimization [33], [34]. The widely accepted IDE
is JupyterLab/Notebooks which also allows rapid prototyp-
ing and the ANN is entangled algorithmically within the
Python code. The underlying neuron model is computationally
friendly and hardware accelerated by sophisticated optimiza-
tion based on NVIDIA TensorCores [35]. While Deep Learn-
ing (DL) based products have reached industrial standards in
certain areas, there are intrinsic properties that also denote
some of their shortcomings. For instance, DL models require
“big data” and thousands of iterations to be trained properly.
Especially, DL models are trained first and applied afterwards
(inference). To overcome learning from scratch each time, a
technique called ”transfer learning” is utilized [36]. This con-
tradicts multiple evidence, that both humans and rodents are
capable to learn from one single experience [37]. Furthermore,
in DL the information are encoded in the model structure and
a new output (e.g. new classification item) usually induces a
change of the network structure (output layer). This stands in
contrast to biological organisms, whose learning is incremental
from the beginning and continues during life [26]. Also the
issue of catastrophic forgetting is an active area of research
[38].
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Fig. 4. LTP/LTD is modulated by NE and ACh and can adapt STDP based learning to environmental needs.

Fig. 5. Benchmark performance of CARLsim5 and CARLsim 6.

SNNs are biologically plausible neural networks that are
based on the Hodgkin/Huxley differential equation system [39]
and often classified as ”third generation” NN. However, even
with today’s computing technology, this equation system is
still too computational intensive and therefore not suited for
large scale network simulations. To overcome this, Izhikevich
simplified the equation system while preserving the 20 fun-
damental neurocomputational properties of biological neurons
[40], [41], and found the simplest possible model capable of
spiking, bursting, being an integrator or resonator that is there-
fore suited for large-scale bio-realistic artificial neural net-
works [42]. CARLsim 6 SNNs support temporal information,
population coding, sparse coding and dimensionality reduction
[43], as well as neuromodulation of neural circuits, which
provide biologically detailed models and powerful computing
tools that may benefit both the neuroscience and computer

science communities.

B. Comparison to SNN simulation environments

We compare CARLsim 6 with the latest versions of open
source SNN simulators that support parallel execution of
SNN simulations, conductance based synapses, and synaptic
plasticity. These simulators include1: Brian2 [44], GeNN [45],
Nengo [46], NEST [47], NEURON [48], NeuronGPU [27].
Table I presents a comparison of supported features and
software/ hardware requirements of different SNN simulation
platforms.

Compared to other simulators, CARLsim 6 is advantageous
in that it implements a wide variety of synaptic learning rules
and biologically plausible model features, and is also highly
optimized for large scale SNN simulations leveraging parallel
execution with different computing hardware.

As a recently developed simulator, NeuronGPU targets
GPUs as backend [27], and can be seen as a challenger in
the area of performance as it optimizes the spike delivery
algorithm. Although NeuronGPU has the similar asymptotic
performance as CARLsim 6, its feature development seems
still to be in an early stage as NeuronGPU has only nearest-
neighbor STDP implemented as synaptic plasticity and no
neuromodulation [27].

We also compare the support of neuromodulation in dif-
ferent SNN simulators, which is an important feature intro-
duced in CARLsim 6. NEST can generate code for DA-
STDP utilizing NESTML [47]. Brian provides an improved
generator syntax for synaptic plasticity. Nengo applies BMC
as unsupervised learning as equivalent for tripplet based STDP.
The others like NCS or GeNN have not been changed in this
functional area.

1To the best of our knowledge, NeMo and PCSIM, that have been included
in earlier comparison to CARLsim [2], are not under active development.
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Fig. 6. Representative voltage traces of
individual neurons from each neuron type
in the CA3 SNN (left), firing phase his-
tograms of each neuron of each type rel-
ative to the beta oscillation the CA3 SNN
produced (middle), and power spectra of
CA3 Pyramidal neurons (right), produced
from the SNN Analysis toolbox [22].

TABLE I
COMPARISON OF SNN SIMULATORS BY RECENT FEATURES. AN ‘X‘

DENOTES THAT THE FEATURE IS DIRECTLY SUPPORTED BY THE
SIMULATOR, WHILE A ‘/‘ MEANS THAT THE USER HAS TO IMPLEMENT

CUSTOM CODE, RESPECTIVELY THAT THE FEATURE IS ONLY PARTIALLY
IMPLEMENTED, AND A BLANK ‘ ‘ THAT FEATURE IS NOT AVAILABLE IN

GENERAL. GRAY COLORED CELLS HIGHLIGHT FEATURES NEW IN
CARLSIM 6 COMPARED TO PREVIOUS VERSIONS.
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Synaptic plasticity

DA-STDP X / X X X
5HT-/ ACh-/ NE-STDP X / / X
Modulated LTP/ LTD X
Connection specific STDP X X X X X
Neuromodulated STP X / /
Connection specific STP X X X X

Synapse model
Group level CUBA X X X X
Group level COBA X X X X
Neuromodulation X X X / X X

Tools
Parameter tuning (JAVA) X X
Parameter tuning (Python) X / X
Analysis/ visualization X / X / X

Front-ends
Python/ PyNN X X X X X X X X
C/ C++ X X X X X

Back-ends
Single-threaded CPU X X X X X X X X
Multi-threaded CPU X X X X X X X
Distributed / X X X X X
Single GPU X / X X X X
Multi-GPU X X X
Hybrid (Multi-CPU/ GPU) X X

V. CONCLUSION

The new features of CARLsim 6 enable the biorealistic
implementation of SNNs. This latest version supports multiple
neuromodulators and their effects on neuronal excitability and
plasticity. STDP and STP are now at the connection level
allowing greater flexibility. The introduction of the Python
OAT and the Python based parameter tuning with LEAP allows
more users to access analysis tools. Therefore CARLsim 6
has the potential to be an important tool for neuromorphic
computing and the construction of neurobiologically inspired
cognitive machines [26].

CARLsim 6 continues to be computationally efficient on
multiple compute platforms. As CARLsim 6 is implemented in
C++ and CUDA, the core library requires only a few MBytes
of space and runs as native machine code on off-the-shelf
robotics hardware like the NVIDIA Jetson. As the provided

framework is highly backward compatible, CARLsim 6 can be
utilized by CARLsim 4 and CARLsim 5 users to consolidate
their implementations and to benefit from the latest hardware
like the NVIDIA DGX-A100. CARLsim 6 is positioned to
span a new ecosystem by motivating new projects to be able
to build on a matured core library with a powerful support
system. As Open Source under MIT License, it is available
on GitHub (https://github.com/UCI-CARL/CARLsim6).
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