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Abstract—In rodent navigational studies, spatial responses
have been identified in both the hippocampal subregion CA1
and the subiculum (SUB), but these two brain regions appear
to encode spatial features differently. Place fields of SUB place
cells are larger and less specific than CA1. Additionally, SUB
neurons exhibit stronger directional modulation for heading and
axes of travel. Based on neural and behavioral data recorded
as rats perform a navigational task on a “triple-T” maze,
we present a spiking neural network modeling framework to
replicate response properties observed in the CA1 and SUB. The
parameters of Spike Timing Dependent Plasticity and homeo-
static scaling (STDP-H) were evolved such that the response
of the two different SNNs resembled recordings from CA1 and
SUB when rats traversed the triple-T maze. Our results suggest
that positional input may be more influential in forming CA1
place cells, while the SUB appears to integrate both allocentric
positional information and self-motion cues to encode “kinds of
places”. Furthermore, our results predict that the different spatial
responses in these regions may be due in part to different STDP-
H learning parameters. The framework presented here could be
used as an automated parameter tuning system for replicating
responses in other brain regions.

I. INTRODUCTION

Rodents flexibly and reliably navigate in the world by using
a variety of available spatial information. Effective spatial nav-
igation is supported by localizing oneself in the environment,
knowing the current direction of movement, and inferring
about the progress along routes leading to the destination.
Several regions in the rodent brain have been identified as
important for spatial navigation, including the hippocampal
sub-region CA1 and the subiculum (SUB). Lesions of both
regions cause deficits in navigational abilities and a loss of
accurate localization ability [1]. On the single cell level, place
cells have been identified in both regions [2], [3]. Place cells
were shown to signal the allocentric position of the animal
during navigational tasks. These cells fire selectively in spe-
cific locations in the environment, and the population ensemble
activity can be used to decode the animal’s movement [4].
However, compared to CA1, SUB place cells showed larger,

less specific place fields [5], and exhibit more directional
modulation for activity within those fields [3], [6].

A number of computational models have been proposed
to explain the emergence of CA1 place cells [7]–[9], but
fewer computational studies concern the spatial representations
in SUB neurons. As biologically detailed models, Spiking
Neural Networks (SNNs) have been used to investigate sensory
processing in the brain [10] and to model brain activities
[11]. Different methods of optimizing SNNs have also been
proposed, such as unsupervised learning with spike timing
dependent plasticity (STDP) [12] and evolving the structure
of the network [11]. Our method is unique that we evolve the
synaptic learning rule in SNNs to map recorded behavioral
data to neuronal data.

In this paper, we extend the method of evolving SNNs
introduced in [13] to replicate neural dynamics of CA1 and
SUB neurons. We use datasets recorded from the CA1 and
SUB while rats performed a complex navigational task on a
triple-T maze (Fig. 1) [14]. Neural circuits of both regions
are modeled with SNNs optimized by evolving spike tim-
ing dependent plasticity with homeostatic scaling (STDP-H)
parameters using evolutionary algorithms (EAs). In the SNN
models, behavioral variables including the allocentric position
of the animal and self-motion related variables such as the
head direction and linear/angular velocity of the animal serve
as the input to the network, and a recurrently connected group
of excitatory spiking neurons is tuned to replicate the CA1 and
SUB neural activity. Our results suggest that the same spiking
neural network modeling framework can be used to model
different brain regions related to spatial navigation. In addition,
analysis of the connection weights and results from ablation
studies are suggestive of how CA1 and SUB integrate sensory
information differently to form spatial representations. The
CA1 region fires sparsely and less actively with higher spatial
information, whereas the SUB is more active and directionally
selective. These differences are captured in the connection
weights and the evolved STDP-H parameters of these regions.
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Fig. 1: Schematic drawing of the navigational task. The rat
would start from the bottom (indicated by a green dot), take
one of the four internal routes (i.e., Routes 1-4) to get to a
reward site, and return to the starting point via one of the
two return routes (i.e., Routes 5-6). The rats demonstrated
remarkable navigation ability and working memory capacity
by visiting all four reward sites with minimal repeats.

II. METHODS

We took a unique modeling approach of evolving hyper-
parameters in spiking neural networks. Spiking neural net-
works are preferable in this study as they accurately cap-
tured the nature of our datasets, which included spike trains
that were distributed into spatial bins and processed with a
smoothing function [6]. We processed the spike trains in our
spiking models following the same procedure to ensure a direct
comparison with the recorded data. The models were opti-
mized with an approach combining evolutionary algorithms
(EAs) and unsupervised learning using STDP and homeostatic
synaptic scaling (STDP-H) [13]. The EAs searched for opti-
mal hyper-parameters for the STDP-H learning rule, without
directly updating the connection weights in the network. To
ensure the reliability of our modeling and parameter search
process, we carried out 5 independent evolutionary runs for
each modeled region, each with a population size of 15
individual networks that underwent 50 generations of EA.

All simulations were performed with the CARLsim 4 spik-
ing neural network simulator [15]. CARLsim 4 includes a
parameter tuning interface (PTI) that links to an evolutionary
computation library called ECJ [16].

A. Network Model

The network model contained 1282 neurons in total: 640
excitatory neurons modeled as regular spiking (RS) Izhike-
vich spiking neurons, 160 inhibitory neurons modeled as fast
spiking (FS) Izhikevich spiking neurons [17], and 482 input
neurons modeled as Poisson spike generators. The input layer
contained four types of behavioral inputs: 450 neurons for
allocentric position (Pos), 12 neurons for angular velocity
(AV), 12 neurons for linear velocity (LV), and 8 neurons for
head direction (HD). Each input group was connected to both
the excitatory and inhibitory groups. The inhibitory neuron
group provided feed-forward inhibition to the excitatory neu-
ron group, while the excitatory neuron group had recurrent

excitatory connections within its own group. Neuron groups
were sparsely connected with a probability of 0.1 (Fig. 2).
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Fig. 2: Network architecture. This network contains four input
neuron groups, representing four types of behavioral variables:
angular velocity (AV), linear velocity (LV), head direction
(HD), and allocentric position (Pos) of the rat. The input
neuron groups are connected to an excitatory neuron group
and an inhibitory neuron group. Neurons within and between
groups have a connection probability of 0.1.

Input streams to the SNNs represented the kinds of in-
formation processed by connected regions. For example the
hippocampal sub-region CA3 provides positional information
[18], the medial entorhinal cortex (MEC) provides velocity
related information [19], and the anterior thalamic nucleus
(ATN) provides movement and head direction related infor-
mation [20], [21] to CA1 and SUB. We created the tuning
curves for each type of input streams following the same
fashion as in [13]. Parameter values were set to allow the
tuning curves to cover the entire value range in our datasets
and elicit varying neuronal responses. The analog response
from the tuning curves was converted into spike trains using
a Poisson spike generator.

B. Evolutionary Computation

Instead of directly evolving the connection weights, we
employed a “learning to learn” paradigm and evolved a total
of 20 hyper-parameters in our network. The hyper-parameters
in the network fell into 3 categories: (1) Parameters of the
STDP learning rule, which included the amplitude param-
eters A+ and A−, and the time decay constants τ+ and
τ−. Optimal values for these parameters were searched for
the Excitatory-STDP that projected into both the excitatory
(EE) and inhibitory (EI) neuron groups, and the Inhibitory-
STDP that projected into the excitatory (IE) neuron group.
(2) Parameters of the homeostatic synaptic scaling rule that
were applied to the excitatory and inhibitory neuron groups,
which included the target firing rate Rtarget and the time scale



parameter T . (3) The maximum connection weights for the
inter-group connections (i.e., Inp → Exc, Inp → Inh, Exc →
Exc, Inh → Exc).

Models were optimized through 50 generations of EA. In
the first generation, the EA initialized 15 networks, each of
which went through a training and testing phase and obtained
a fitness score. Parameters of the best performing 3 networks
were then used to generate a new generation of 15 network
individuals using the (µ, λ) Evolutionary Strategy (ES) [16].

C. Training and Testing of the Model

We used a subset of the data in [14], which included 5430
trials from 32 recording sessions for CA1, and 5908 trials from
49 recordings for SUB. Each trial contained neuronal activity
recorded from one brain region and behavioral variables of the
animal as it traversed one of the six routes of the maze shown
in Fig. 1. For both CA1 and SUB datasets, we shuffled the
data based on trials and split them in half to create a pool of
training data and a pool of testing data.

In each EA generation, a population of networks with dif-
ferent hyper-parameters went through a training and a testing
phase, and the fitness scores of the networks were evaluated
by the EA to generate the hyper-parameters for the next
generation. The training and testing datasets each consisting
of 600 trials (i.e., 100 trials for each route) were re-sampled
every generation from the training and testing data pools
respectively. In the training phase, behavioral data were fed
into the network and STDP-H learned associations between
neurons and stabilized network activity. STDP updated the
connection weights based on the temporal distance of pre-
and post-synaptic spikes, and homeostatic scaling modified
the weights in a multiplicative manner based on the post-
synaptic firing rate [22]. During testing, we disabled synaptic
plasticity and froze the connection weights. We presented the
network with different behavioral data from the testing data
pool while recording neural activity. To determine how well
the simulated neurons resembled the experimentally observed
neurons, a Pearson correlation coefficient, ρ, was computed
between the mean firing rate of excitatory neuron activity in
the SNN and experimentally observed neurons. Using a greedy
approach, we determined a match between a simulated neuron
and an experimentally observed neuron based on the highest
correlation value and each neuron could only be matched once.
After all experimentally observed neurons found a match, a
fitness value of the network was calculated by summing the ρ
values of all matched neuron pairs:

y =

N∑
i

ρ(R̄i
real, R̄

i
match)− L (1)

where L was a penalty for unrealistically high firing rates,
which only applied when the maximum mean firing rate of
one of the excitatory neurons Rexc exceeded the threshold
firing rate Rt = 100 Hz:

L =

{
max(R̄exc)−Rt , if max(R̄exc) > Rt

0 , otherwise
, (2)

Although only a subset of neurons in the excitatory neuron
group were matched to the recorded neurons, the entire neuron
group was intended to model a larger population of CA1 and
SUB neurons. Neurons that were not explicitly matched to
the recorded neurons were expected to have similar response
properties as those that were explicitly matched.

D. Positional Reconstruction Matrix

Population analysis of the neuronal activity was conducted
by comparing the positional reconstruction matrices of the
simulated neurons in the models and experimentally observed
neurons in our datasets [23] . We concatenated the neuronal
activity in every positional bin of all six routes and computed
mean firing rate vectors for every neuron based on odd and
even trials. We obtained mean rate matrices Rodd ∈ Rn×m

and Reven ∈ Rn×m for the entire neuron population, where n
represented the number of neurons in the population, and m
represented the number of positional bins in the maze. Each
column in the matrix represented the population activity in
a specific positional bin. We then computed the positional
reconstruction matrix based on the columns of the odd trial
ensemble rate matrix and the even trial one:

M = ρ(Rodd, Reven), M ∈ Rm×m (3)

where ρ(·) computes the Pearson correlation coefficient.
Comparing the positional reconstruction matrix of simulated

neurons and experimentally recorded neurons allowed us to
gauge how well the response properties of simulated neurons
resembled those of recorded neurons. A similarity score was
obtained by converting the matrices into column vectors and
correlating the two vectors:

g = ρ(Msimulated,Mrecorded), g ∈ R1×1 (4)

Different from the fitness function (Equation 1), this mea-
surement took into account neurons that were not explicitly
matched to the recorded neurons, and thus also tested whether
the learned response properties generalized to the entire sim-
ulated neuron population.

III. RESULTS

A. Evolved Networks Captured Properties of Both Regions

SNN models were optimized such that a subset of the
excitatory neurons had firing patterns aligned with those of
experimentally recorded neurons (295 neurons in the CA1
dataset, and 382 neurons in the SUB dataset). As described
in Section II-C, fitness function of the network was defined
to be the sum of pairwise correlation values of all simulated-
recorded neuron pairs, with a penalty for high firing rates of
the simulated neurons (Equation 1). The highest fitness scores
that could be achieved by the CA1 and SUB models were 295
and 382 respectively.



We conducted 5 evolutionary runs for each model. With a
population of 15 individual networks, the best fitness score in
the first generation averaged to be 140.44 for the CA1 model
and 136.83 for the SUB model. As shown in Fig. 3, by 50
generations, the networks achieved an averaged fitness score
of 186.97 for the CA1 model, and 213.48 for the SUB model,
corresponding to a mean Pearson’s ρ value of 0.63 and 0.56
respectively (normalized to the number of recorded neurons in
each brain region). The fitness scores were comparable to those
reported in [13]. These scores showed that the firing patterns
of experimentally observed neurons were captured by a subset
of neurons in the excitatory neuron group. The networks also
showed a generalization ability, as excitatory neurons that were
not explicitly matched to the recorded neurons also showed
response properties similar to those observed in CA1 and SUB.

Similar to rodent recordings [6], [14], we observed spatially
selective place cell responses in the simulated CA1 and
directionally modulated responses along maze axes in the
simulated SUB (Fig. 4). Simulated neurons in the CA1 model
were mostly quiet in other positions, and had lower firing rates
than the simulated SUB. Simulated neurons in the SUB had
higher firing rates and responded to multiple locations. As has
been observed in the rat, some of the SUB neurons encoded
analogous spaces and were sensitive to the direction of travel.
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Fig. 3: Best-so-far fitness scores over 50 generations for the
CA1 and SUB models. Solid lines show the mean and shaded
areas show the standard deviation of 5 runs. At generation 50,
the CA1 model reached a mean fitness score of 186.97 and
the SUB model had a mean score of 213.48, corresponding to
a mean Pearson’s ρ value of 0.63 and 0.56 respectively.

After training, the distribution of weights reflected the
function of the brain region. Fig. 5 shows the histogram of
connection weights from the input variables to the excitatory
neuron groups. In the CA1 model (Fig. 5, top row), connection
weights showed a U-shape distribution pattern. The weight
values clustered at the limiting values (i.e. 0 and maximum
weight), with more values near 0 for AV, LV, and HD, and
more values near the maximum weight for Pos. This reflects

Fig. 4: Examples of representative excitatory neurons in the
CA1 and SUB models. Each firing rate map is labeled with
the maximum firing rate of the neuron. Model units exhibit
differential spatial representations: CA1 model units show
single place fields, while the SUB model units respond to
multiple locations that are analogous with respect to maze
structures. The first and third SUB units show examples of
analogy cells, and the second SUB unit shows an example of
an axis-tuned cell. Arrows denote the direction of travel.

the place encoding observed in this region. In contrast, a large
proportion of connection weights in the SUB model (Fig. 5,
bottom row) clustered near the maximum weight, with all four
types of input variables showing a similar distribution. The
responsiveness of SUB neurons, on average, to a broader set
of positional, directional, and self-motion input types may be
key to generation of firing fields in multiple locations that
are analogous in terms of the direction of travel and location
within topologically similar routes

Interestingly, the STDP parameters evolved to support these
differential responses. Fig. 6 shows the evolved STDP curves
for the two modeled brain regions. Compared to the SUB
model, the CA1 model showed stronger long-term-depression
(LTD) for E-STDP on both excitatory and inhibitory neurons,
and weaker long-term-potentiation (LTP) for E-STDP on the
inhibitory neurons. For the other evolved hyper-parameters,
the maximum weight for the Inh → Exc connection in the
CA1 model is stronger than that in the SUB model (CA1:
0.54 ± 0.05, SUB: 0.16 ± 0.11, Wilcoxon’s rank sum test,
p < 0.01). The CA1 model also showed a trend of hav-
ing smaller values for the time scale parameter T (CA1:
0.78 ± 0.35 s, SUB: 4.5 ± 3.29 s, Wilcoxon’s rank sum test,
p = 0.056) and the mean firing rate for the excitatory group
(CA1: 2.28±0.36 Hz, SUB: 5.19±2.38 Hz, Wilcoxon’s rank
sum test, p = 0.056).

To make a quantitative comparison between the spatial
representations emerged from the two modeled regions, we
conducted spatial analyses on the excitatory neurons of both
modeled region (Table I). These analyses were developed
to interpret neural correlates of rodent navigation. We com-
puted spatial information per spike [24], spatial sparsity [25],
spatial selectivity [25], and spatial coherence [26]. As the
excitatory neuron group was intended to model a larger
population of neurons in the corresponding brain region, we
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Fig. 5: Histograms of the connection weights from the input groups to the excitatory neuron groups. Weight values range from
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Fig. 6: Visualization of STDP curves used in the evolved and trained CA1 and SUB models. Solid lines show the mean,
and shaded areas show the standard deviation of 5 evolutionary runs. CA1 model had slightly stronger LTD on the EE and
EI connections, and weaker LTP on the EI connections. The I-STDP curve in both models had similar amplitude and time
constant.

analyzed neurons from the entire group instead of only those
explicitly matched to the experimentally observed neurons.
Consistent with the experimentally observed neurons and other
neurophysiological studies [3], SUB neurons showed higher
firing rates, lower spatial information per spike, lower spatial
selectivity, and lower spatial coherence than CA1 neurons
(Wilcoxon’s rank sum test, p < 0.01).

B. Population Vector Analysis

We conducted population vector analyses with positional
reconstruction matrices to test whether the spatial representa-
tions of these simulated brain regions are similar to the rodent.
The population activity in both models closely resembled
that of the experimentally observed neurons. Computed with
Equation 4, CA1 model units obtained a similarity score
of 0.76 ± 0.01 and SUB model units obtained a score of
0.69± 0.01 (i.e., mean ± standard deviation).

Fig. 7 visualizes the positional reconstruction matrix for
each model from a representative evolutionary run. Each value
of the positional reconstruction matrix depicted the similarity
of population activity in one location versus the activity in
another location. Values on the diagonal line described the
correlation of activity in the same location between odd and
even trials. Both CA1 and SUB simulated neurons showed
high correlation values on the diagonal line (median correla-
tion value for CA1 averaged over 5 runs: 0.94±0.01, for SUB:
0.96±0.01), indicating that simulated neurons in both models
reliably encoded locations. The two matrices also showed
distinctive differences in off-diagonal values. Comparing the
grids highlighted in red on both matrices, the SUB matrix had
high correlation values around the diagonal in the grids while
the CA1 matrix didn’t show this pattern, indicating that the
SUB model units had a stronger head-direction tuning. Ad-
ditionally, for the grids highlighted in green, the SUB matrix



TABLE I: Spatial analyses on the model units (mean ± standard deviation) in the five evolutionary runs (sim) and the
experimentally recorded neurons (recorded). Values in bold fonts showed greater values in comparison between CA1 and SUB
neurons (Wilcoxon’s rank sum test, p < 0.01).

SpatialMetrics CA1 (sim) SUB (sim) CA1 (recorded) SUB (recorded)
meanFR (Hz) 0.85 ± 0.87 2.16 ± 2.00 0.88 ± 1.42 3.62 ± 4.23
maxFR (Hz) 27.66 ± 18.78 41.75 ± 33.35 31.57 ± 14.91 38.86 ± 21.35

spatialIfo (bits) 2.87 ± 1.04 1.92 ± 0.69 2.97 ± 1.19 1.56 ± 1.21
sparsity 0.12 ± 0.08 0.20 ± 0.10 0.12 ± 0.13 0.35 ± 0.25

selectivity 64.53 ± 74.53 27.29 ± 21.47 63.76 ± 50.79 31.18 ± 38.84
spatialCoherence 0.83 ± 0.05 0.81 ± 0.05 0.48 ± 0.12 0.49 ± 0.14

Fig. 7: Positional reconstruction matrices of the simulated CA1
and SUB populations. Mean activity of the even trials are
correlated against that of the odd trials. Position bins for each
route are shown on the axes. At each position bin, the color
represents the correlation value. High values on the diagonal
lines indicate that position along the route is inferred from
population activity of the neurons. Grids highlighted in red
and green show stronger head-direction and analogous tuning
of SUB ensemble compared to CA1.

showed a square region of higher correlation values near the
top left of the grids, which correspond to a higher correlation
of population activity on the longer segments between Routes
5 and 6. These location pairs were spatially separated but
shared the same head direction and analogous maze structure
in the environment. These results indicate that the simulated
SUB neurons had stronger head direction tuning and encoded
analogous spaces more profoundly than the simulated CA1
neurons, which is consistent with the differences observed in
the rodent CA1 and SUB [14].

C. Control Experiments

To verify the necessity of evolutionary algorithms and STDP
learning in the optimization process, we ran the models in two
additional conditions; one in which there was STDP but no
EA, and another in which there was no STDP and no EA.
In both conditions, we had 5 runs for each model, with each
run including 15 individual networks initialized with random
hyper-parameters. Similar to the fully evolved and trained
models, models in the control experiments were evaluated
with a fitness function (Equation 1), and the best performing
network individual in each run was selected for population
vector analysis.

In both these control cases, the performance of the SNNs
was worse than evolving STDP-H parameters for 50 genera-
tions. In the “STDP no EA” condition, where each of the 15
networks went through the same training and testing procedure
as the fully evolved models did but did not go through the
evolutionary process, the CA1 model obtained an average
similarity score of 0.46 ± 0.29 and the SUB model obtained
an average similarity score of 0.60 ± 0.03. In the “no STDP
no EA” condition, where each of the 15 networks was tested
without being trained with STDP, the CA1 model obtained an
average similarity score of 0.26 ± 0.36, and the SUB model
obtained an average similarity score of 0.12± 0.28.

Taken together, these results show that STDP greatly im-
proved the performance of the network, and that having multi-
ple generations of evolutionary computation was necessary for
finding the hyper-parameters that allow for higher resemblance
of simulated neuronal activity to that of the modeled brain
region. These control experiments suggest that parameter
tuning through the evolutionary process and synaptic plasticity
through STDP-H were necessary to replicate these brain
regions. Similar results were reported when modeling the
retrosplenial cortex (RSC) using this methodology [13].

D. Ablation Studies
To examine the effect of removing input streams on each

modeled brain region, we conducted ablation studies using
the fully evolved and trained networks. The ablation studies
included lesions of connections from each of the input streams
to both the excitatory and inhibitory neuron groups. Lesion
models were created by loading the trained networks and
removing the inter-group connections corresponding to the
input stream(s). The lesion models were presented with the
same input variables as the non-lesioned models, and the
network activity was recorded. Population vector analysis was
then performed on the lesion models to assess the impact of
lesions of input streams.

Lesions had differential effects on model performance that
reflect the spatial encoding of CA1 and SUB (Fig. 8). In
the CA1 model, lesions of the positional input (Pos) had a
strong impact on the performance of the network, while lesions
of one of the three idiothetic inputs (AV, HD, and LV) did
not have a strong effect on performance. Lesions of all three
idiothetic inputs together (AV HD LV) had a stronger impact
than individual lesions, but were weaker than lesions of Pos
alone. Additionally, lesions of the head direction and positional
inputs together (HD Pos) brought the similarity score down
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Fig. 8: Ablation studies: similarity scores of the unlesioned and lesioned models. Bars show the mean values and the error
bars show standard deviation of scores obtained by 5 instances of each model. Lesions of the positional input (Pos) in the
CA1 model had the strongest impact on the network performance compared to lesions of other single input streams. In the
SUB model, lesions of all four types of input had a similar level of impact on the network performance.

to near 0. In contrast, lesions of any input stream to the SUB
had a moderate impact on network performance. Similar to the
CA1 model, lesions of the head direction and positional inputs
together (HD Pos) in the SUB model greatly decreased the
similarity score. Taken together, these ablation studies further
support that the CA1 is more place specific and the SUB is
more driven by inputs related to action or movement.

IV. DISCUSSION

The spiking neural network modeling framework presented
here captured the differing spatial responses of hippocampal
CA1 and the SUB through unsupervised learning, via STDP-
H, and evolutionary algorithms (EAs). The resulting networks
show highly place-specific responses in CA1 neurons and
the emergence of pattern recurrence in the spatially specific
firing of SUB neurons. These differing functional responses
were reflected in the STDP-H parameters and the weight
distributions of the simulated spiking neural networks (SNNs).
Moreover, the present simulations make testable experimental
predictions for the plasticity and connectivity in these brain
areas.

The evolutionary algorithm automated the design of SNNs
by indirect encoding of network learning parameters. This
approach had been shown in a previous study to successfully
replicate neural dynamics observed in the retrosplenial cortex
(RSC) as rodents traverse a W-shaped maze [13]. In the present
work, we extended the approach to model two other regions
that are important to spatial navigation: hippocampal CA1
and the SUB. Using data recorded in the two brain regions
when rats performed the same navigational task in the same
environment allowed us to compare our two models directly.

With the same input representations, the EAs selected dif-
ferent STDP-H learning parameters for the two SNN models,

which led to different connection weight distributions. STDP-
H parameters in the CA1 models had more LTD than in SUB,
which led to a strong pruning effect in the CA1 excitatory
group. In contrast, synapses connecting the AV, LV, and HD
input groups with the SUB excitatory groups had larger con-
nection weights than in the CA1 model, suggesting stronger
vestibular inputs to the SUB model, which is consistent with
neurophysiological observations [20], [27].

Different distributions of connection weights in turn al-
lowed for divergent spatial representations to emerge in the
network models. These spatial representations, as analyzed
through firing rate distributions, firing rate map visualizations,
classic spatial metrics including spatial information, sparsity,
selectivity, and spatial coherence, were consistent with those
observed in the experimentally recorded neurons. The network
models, though simplified in terms of the types of input
information and network sizes, generated neural dynamics
resembling those observed in the real neural circuits. It should
be noted that although only a subset of simulated neurons were
optimized to match with recorded neurons, all neurons in the
simulated neuron groups were included in the analyses and
showed consistent response properties within the group. This
suggests that our modeling approach allowed for generaliza-
tion of learned firing patterns to unobserved data.

Results of the control experiments underscore the impor-
tance of combining both STDP and evolutionary computation
in the modeling framework. By evolving the learning param-
eters, the search space is dramatically reduced, as compared
to directly evolving weights or using a method such as back-
propagation. This study further suggests a functional role for
STDP-H. The result is a viable SNN that can be used for a
range of simulation studies. The success in modeling CA1,
SUB and RSC [13] suggests that the approach may be a



general-purpose means to building SNNs.
In the ablation studies, we removed one or more input

streams from the fully evolved and trained networks. Lesions
of positional input to the CA1 model had a stronger impact on
the network performance than the other three input streams,
suggesting that spatial representations in CA1 are more reliant
on the CA3 input to CA1 than self-motion signals. In the SUB
model, lesions of any one of the four input streams had a
similar level of impact on the network performance, suggesting
that the SUB model utilized different input information more
equally.

In addition to showing single place fields as CA1 neurons
do, SUB neurons often encode multiple locations that share
certain spatial features in a triple-T maze environment [14].
These representations may require an integration of idiothetic
information as well as positional information. In both models,
a significant drop in the similarity score was observed when
two or more input streams were lesioned together, suggesting
a conjunctive coding of multiple input variables in the CA1
and SUB models, which coincides with the evidence that CA1
and SUB neurons are encoding multiple types of signals [28],
[29].

The presented modeling approach could be extended to
include multiple brain regions to investigate how they interact.
In future studies, we will integrate findings in this work and
link together the CA1 and SUB models. As neurophysiological
studies suggest, SUB receives a strong input from CA1, and
SUB also sends backward projections to CA1 [20], [30]. Fol-
lowing these findings, we can investigate how the interaction
between the two regions work together during navigation by
connecting the two models and examining how information is
integrated between these brain regions.
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