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Navigation in the World
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Analogous: 
similar distance 
between turns, 
but opposite 
directions



Navigation in the Lab
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Behavioral and neural data (CA1 and SUB) being recorded.

Olson et al. (2021)



Hippocampus and Subiculum (SUB) as a Cognitive Map
Place Cells

(O’Keefe 1976)
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Background: Spiking Neural Networks (SNNs)

Markram et al. (2011)

Spike-Timing Dependent Plasticity (STDP)

Jang et al. (2019)

Real value
Artificial Neural 
Network (ANN)

Spiking Neural 
Network

(SNN)
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Methods: Evolving Spiking Neural Networks

Spiking Neural Network Model
• Behavioral variables recorded from rat: converted 

to spike trains
• Recurrently connected excitatory and inhibitory 

neurons.

Evolutionary Computation
• Evolving parameters of Spike Timing Dependent Plasticity + 

Homeostasis (STDP-H)
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• Objective: reproduce neuronal activity observed in CA1 
and SUB



Results: SNN Neuron Activity Matched to Real Neuron Activity

Fitness Values at Generation 50
• CA1: 187 (295 neurons in the 

dataset, mean correlation of 0.63)
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• SUB: 213 (382 neurons in the 
dataset, mean correlation 0.56)



Results: Differential Firing Properties of Simulated CA1 and SUB

• CA1: single place fields

7• SUB: firing at multiple locations; axis-tuned; analogy responses



Results: Differential Spatial Representations in Population Activity 

correlation
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• Correlation matrix of odd and even trials for real neuron activity
• Provides a nice visualization of how the population encodes position and direction
• High correlation values on the diagonal line indicate consistent firing for the same locations

Olson et al. (2021)



Results: Differential Spatial Representations in Population Activity 

correlation

• Correlation matrix of odd and even trials for simulated neuron activity
• Both models reliably encoded positions
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Results: Differential Spatial Representations in Population Activity 

• Red: internal paths
• Green: return paths

correlation

• SUB activity showed more modulation of head direction
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Results: Spatial Metrics of Simulated Neurons

• Simulated neurons have similar spatial measurements to real neurons
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• Bold text shows significantly larger values comparing CA1 and SUB
- CA1 neurons encoded more spatial information, fired more sparsely and selectively



Results: Connection Weights Reflected Functions of CA1 and SUB

Input -> CA1
• Clustered near 0 except for positional input 
• CA1 activity largely relied on positional input

Input -> SUB
• Clustered near max weight 
• SUB neurons integrate position, head direction, 

and self-motion to encode multiple locations 12



Results: Effects of Input Stream Lesions

• Removing positional input had a strong impact than the other three 
inputs on the performance

• More reliant on the CA3 input to CA1 than self-motion signals 13

Similarity Score: 
correlation of real 
and simulated 
neurons on the 
population level

CA1



Results: Effects of Input Stream Lesions

• Lesions of any input had a moderate impact on network performance
• SUB model utilized different input information more equally
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Similarity Score: 
correlation of real 
and simulated 
neurons on the 
population level

SUB



Conclusion

● Models faithfully reproduced neurophysiological data from CA1 and SUB

● Connection weight analysis and lesion studies showed that:
○ CA1 activity pattern mainly driven by positional input
○ SUB conjunctively encodes position, head direction, and running 

velocity

● Evolving learning rules in SNNs to fit neurophysiological data may be a 
general-purpose means to building high-fidelity models of brain regions
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Thank you!
For more information, please contact: 

Kexin Chen: chen.kexin@uci.edu
http://kexinchenn.github.io/

Cognitive Anteater Robotics Lab (CARL), UC Irvine
http://www.socsci.uci.edu/~jkrichma/CARL/index.html

This work is supported by the Air Force Office of 
Scientific Research (AFOSR)
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