IJCNN 2021

Differential Spatial Representations in Hippocampal CA1 and Subiculum Emerge in Evolved Spiking Neural Networks

Kexin Chen¹, Alexander Johnson², Eric Scott³, Xinyun Zou¹,

Kenneth De Jong³, Douglas Nitz² and Jeffrey Krichmar¹

¹University of California, Irvine

²University of California, San Diego

³George Mason University

Navigation in the World

Navigation in the Lab

Behavioral and neural data (CA1 and SUB) being recorded.

Olson et al. (2021)

Hippocampus and Subiculum (SUB) as a Cognitive Map

SUB Axis-tuned Activity (Olson et al. 2017)

SUB Analogy Activity (Olson et al. 2021)

Background: Spiking Neural Networks (SNNs)

Jang et al. (2019)

Markram et al. (2011)

⁴

Methods: Evolving Spiking Neural Networks

Spiking Neural Network Model

- Behavioral variables recorded from rat: converted to spike trains
- Recurrently connected excitatory and inhibitory neurons.

Evolutionary Computation

- Evolving parameters of Spike Timing Dependent Plasticity + Homeostasis (STDP-H)
- Objective: reproduce neuronal activity observed in CA1 and SUB

Results: SNN Neuron Activity Matched to Real Neuron Activity

Results: Differential Firing Properties of Simulated CA1 and SUB

- CA1: single place fields
- SUB: firing at multiple locations; axis-tuned; analogy responses

Results: Differential Spatial Representations in Population Activity

- Correlation matrix of odd and even trials for real neuron activity
- Provides a nice visualization of how the population encodes position and direction
- High correlation values on the diagonal line indicate consistent firing for the same locations

Results: Differential Spatial Representations in Population Activity

- Correlation matrix of odd and even trials for simulated neuron activity
- Both models reliably encoded positions

Results: Differential Spatial Representations in Population Activity

• SUB activity showed more modulation of head direction

Results: Spatial Metrics of Simulated Neurons

SpatialMetrics	CA1 (sim)	SUB (sim)	CA1 (recorded)	SUB (recorded)
meanFR (Hz)	0.85 ± 0.87	2.16 ± 2.00	0.88 ± 1.42	3.62 ± 4.23
maxFR (Hz)	27.66 ± 18.78	41.75 ± 33.35	31.57 ± 14.91	38.86 ± 21.35
spatialIfo (bits)	$\textbf{2.87} \pm \textbf{1.04}$	1.92 ± 0.69	2.97 ± 1.19	1.56 ± 1.21
sparsity	0.12 ± 0.08	$\textbf{0.20} \pm \textbf{0.10}$	0.12 ± 0.13	0.35 ± 0.25
selectivity	64.53 ± 74.53	27.29 ± 21.47	63.76 ± 50.79	31.18 ± 38.84
spatialCoherence	0.83 ± 0.05	0.81 ± 0.05	0.48 ± 0.12	0.49 ± 0.14
	•	· · · · · · · · · · · · · · · · · · ·		

- Simulated neurons have similar spatial measurements to real neurons
- Bold text shows significantly larger values comparing CA1 and SUB
 - CA1 neurons encoded more spatial information, fired more sparsely and selectively

Results: Connection Weights Reflected Functions of CA1 and SUB

Input -> CA1

CA1 activity largely relied on positional input

Input -> SUB

- - SUB neurons integrate position, head direction, and self-motion to encode multiple locations

Results: Effects of Input Stream Lesions

Similarity Score: correlation of real and simulated neurons on the population level

- CA1 Removing positional input had a strong impact than the other three inputs on the performance
 - More reliant on the CA3 input to CA1 than self-motion signals

Results: Effects of Input Stream Lesions

Similarity Score: correlation of real and simulated neurons on the population level

- **SUB** Lesions of any input had a moderate impact on network performance
 - SUB model utilized different input information more equally

Conclusion

- Models faithfully reproduced neurophysiological data from CA1 and SUB
- Connection weight analysis and lesion studies showed that:
 - CA1 activity pattern mainly driven by positional input
 - SUB conjunctively encodes position, head direction, and running velocity
- Evolving learning rules in SNNs to fit neurophysiological data may be a general-purpose means to building high-fidelity models of brain regions

Thank you!

For more information, please contact:

Kexin Chen: chen.kexin@uci.edu http://kexinchenn.github.io/

Cognitive Anteater Robotics Lab (CARL), UC Irvine http://www.socsci.uci.edu/~jkrichma/CARL/index.html

This work is supported by the Air Force Office of Scientific Research (AFOSR)

References

- O'Keefe J. (1976). Place units in the hippocampus of the freely moving rat. *Experimental neurology*, *51*(1), 78–109. https://doi.org/10.1016/0014-4886(76)90055-8
- Sharp P. E. (1997). Subicular cells generate similar spatial firing patterns in two geometrically and visually distinctive environments: comparison with hippocampal place cells. *Behavioural brain research*, *85*(1), 71–92. <u>https://doi.org/10.1016/s0166-4328(96)00165-9</u>
- Olson, J. M., Tongprasearth, K., & Nitz, D. A. (2017). Subiculum neurons map the current axis of travel. *Nature neuroscience*, 20(2), 170–172. <u>https://doi.org/10.1038/nn.4464</u>
- Olson, J. M., Johnson, A., Chang, L., Tao, E., Wang, X., & Nitz, D. A. (2021). Complementary Maps for Location and Environmental Structure in CA1 and Subiculum. 10.1101/2021.02.01.428537.
- Jang , H., Simeone O., Gardner, B., & Gruning , A. (2019). An Introduction to Probabilistic Spiking Neural Networks: Probabilistic Models, Learning Rules, and Applications. *IEEE Signal Processing Magazine*. https://doi: 10.1109/MSP.2019.2935234.
- Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-dependent plasticity. *Frontiers in synaptic neuroscience*, *3*, 4. https://doi.org/10.3389/fnsyn.2011.00004